Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Poly $\left[\mu_{2}\right.$-hydroxido- μ_{4}-sulfato-neodymium(III)]

Tao Zhang and Jingmei Lu*

School of Life Sciences, Northeast Normal University, Changchun 130024, People's Republic of China
Correspondence e-mail: jingmeilu@yahoo.cn

Received 2 July 2008; accepted 13 July 2008
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{Nd}-\mathrm{O})=0.004 \AA$; R factor $=0.023 ; w R$ factor $=0.057$; data-to-parameter ratio $=10.1$.

The title compound, $\left[\mathrm{Nd}(\mathrm{OH})\left(\mathrm{SO}_{4}\right)\right]_{n}$, was obtained hydrothermally from an aqueous solution of neodymium nitrate, 1,2-propanediamine and sulfuric acid. The structure features nonacoordinated neodymium with sulfate and hydroxide anions acting as bridging ligands. The OH group forms a weak $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond with an $\mathrm{O} \cdots \mathrm{O}$ distance of 3.224 (5) Å.

Related literature

For related literature, see: Doran et al. (2002); Xu, Ding, Zhou \& Liu (2006); Xu, Ding, Feng et al. (2006); Xu et al. (2007); Yuan et al. (2004); Zhang et al. (2004); Ding et al. (2006).

Experimental

Crystal data

$\left[\mathrm{Nd}(\mathrm{OH})\left(\mathrm{SO}_{4}\right)\right]$	$V=365.53(12) \AA^{3}$
$M_{r}=257.31$	$Z=4$
Monoclinic, $P 2_{\curvearrowleft} / n$	Mo $K \alpha$ radiation
$a=4.4678(9) \AA$	$\mu=14.66 \mathrm{~mm}^{-1}$
$b=12.432(2) \AA$	$T=293(2) \mathrm{K}$
$c=6.8575(13) \AA$	$0.10 \times 0.08 \times 0.06 \mathrm{~mm}$
$\beta=106.324(3)^{\circ}$	

Data collection

Bruker APEXII CCD diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)
$T_{\text {min }}=0.322, T_{\text {max }}=0.473$
(expected range $=0.282-0.415)$
1837 measured reflections 675 independent reflections 669 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.013$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.022$
$w R\left(F^{2}\right)=0.056$
$S=1.24$
675 reflections
67 parameters
1 restraint

H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}=0.56 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-2.27 \mathrm{e}^{\AA^{-3}}$

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O5-H1 $\cdots \mathrm{O} 1^{\mathrm{i}}$	$0.83(3)$	$2.43(3)$	$3.224(5)$	$160(6)$
Symmetry code: (i) $-x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{3}{2}$				

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors thank Dr Zhang for help with the structural analysis.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BR2079).

References

Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconson, USA.
Ding, S.-H., Sun, X.-C., Zhu, Y.-L., Chen, Q. \& Xu, Y. (2006). Acta Cryst. E62, i269-i271.
Doran, M., Norquist, A. \& O’Hare, D. (2002). Chem. Commun. pp. 2946-2947. Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Xu, Y., Ding, S., Feng, W., Zhou, G. \& Liu, Y. (2006). Acta Cryst. E62, i147i149.
Xu, Y., Ding, S. \& Zheng, X. (2007). J. Solid State Chem. 2180, 2020-2025.
Xu, Y., Ding, S.-H., Zhou, G.-P. \& Liu, Y.-G. (2006). Acta Cryst. E62, m1749m1750.
Yuan, Y., Song, J. \& Mao, J. (2004). Inorg. Chem. Commun. 7, 24-26.
Zhang, Q., Lu, C., Yang, W., Chen, S. \& Yu, Y. (2004). Inorg. Chem. Commun. 7, 889-892.

supplementary materials

Acta Cryst. (2008). E64, i49 [doi:10.1107/S1600536808021818]

Poly $\left[\mu_{2}\right.$-hydroxido- μ_{4}-sulfato-neodymium(III)]

T. Zhang and J. Lu

Comment

In the last few years, the synthesis of new three dimensional lanthanide sulfates have received great attention, due to their functional applications in catalysis, ion-exchange, and optical device (Zhang et al.,2004; Yuan et al., 2004; Xu, Ding, Feng et al., 2006; Xu, Ding, Zhou \& Liu, 2006; Doran et al., 2002, Xu et al., 2007). In this work, we designed and synthesized the title compound, neodymium $(3+)$ sulfate hydroxide, which features a three-dimensional framework constructed from NdO_{9} polyhedra and SO_{4} tetrahedra.
$\mathrm{Nd}\left(\mathrm{SO}_{4}\right)(\mathrm{OH})$ is isostructural with $\mathrm{La}\left(\mathrm{SO}_{4}\right)(\mathrm{OH})\left(\right.$ Zhang et al.,2004) and $\mathrm{Eu}\left(\mathrm{SO}_{4}\right)(\mathrm{OH})($ Ding et al.,2006), the framework of title compound constructed from NdO_{9} polyhedra and SO_{4} tetrahedra. As show in Fig. 1, the asymmetric unit contains one Nd^{3+}, one $\mathrm{SO}_{4}{ }^{2-}$ group and one hydroxide group. The Nd^{3+} is coordinated by six bridging sulfate ions, each S atom makes four $\mathrm{S}-\mathrm{O}-\mathrm{Nd}$ linkages by sharing the bridging O atoms. The coordination sphere of Nd is completed by three OH^{-}groups, which act as briding ligands between three $\mathrm{Nd}^{\wedge} 3+\wedge$.

The O-H group is involved hydrogen bonding interactions with $\mathrm{O} 1, \mathrm{O} 2$ and O 4 , the distances of $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ are vary from 2.60 (2) to 2.90 (2) Å.

The Nd - O distances are between of 2.374 (4)-2.800 (4) \AA (Table 1)while the $\mathrm{O}-\mathrm{Nd}-\mathrm{O}$ angles are between 66.02 (13) and $141.55(12)^{\circ}$. These bond distances and bond angles are in agreement with those found in the reported rare-earth compounds (Zhang et al.,2004; Ding et al.,2006). The bond distances of S—O and angles of O—S-O are unexceptional. Fig. 2 shows the three-dimensional arrangement in the unit cell, displaying the way the different Nd^{3+} are connected by bridging hydroxide and sulfates groups.

Experimental

Pink block crystals were synthesized hydrothermally from a mixture of $\mathrm{Nd}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}, 1,2$-propane diamine, $\mathrm{H}_{2} \mathrm{SO}_{4}$ and water. In a typical synthesis, $\mathrm{Nd}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.6066 \mathrm{~g})$ was dissolved in a mixture of 1,2-propane diamine (0.2205 g) and water (3.2 ml) followed by the addition of $\mathrm{H}_{2} \mathrm{SO}_{4}(98 \%)(0.3093 \mathrm{~g})$ with constant stirring. Finally, the mixture was kept in a 25 ml Teflon-lined steel autoclave at $180^{\circ} \mathrm{C}$ for 7 days. After the autoclave was slowly cooled to room temperature, Pink block crystals of the title compound were obtained.

Refinement

The H atom of water was located from difference map, while the distance of $\mathrm{O}-\mathrm{H}$ was restrained as 0.85 (2) \AA.

supplementary materials

Figures

Fig. 1. The molecular structure for title compound. Displacement ellipsoids at the 50% probability level.

Fig. 2. The crystal packing in the unit cell of $\mathrm{Nd}\left(\mathrm{SO}_{4}\right)(\mathrm{OH})$.

Poly $\left[\mu_{2}\right.$-hydroxido- μ_{4}-sulfato-neodymium(III)]

Crystal data

$\left[\mathrm{Nd}(\mathrm{OH})\left(\mathrm{SO}_{4}\right)\right]$
$M_{r}=257.31$
Monoclinic, $P 2{ }_{1} / n$
Hall symbol: -P 2yn
$a=4.4678$ (9) \AA
$b=12.432(2) \AA$
$c=6.8575(13) \AA$
$\beta=106.324(3)^{\circ}$
$V=365.53(12) \AA^{3}$
$Z=4$

Data collection

Bruker APEXII CCD

diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=293(2) \mathrm{K}$
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
$T_{\text {min }}=0.322, T_{\text {max }}=0.473$
1837 measured reflections
$F_{000}=468$
$D_{\mathrm{x}}=4.676 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
$\lambda=0.71073 \AA$
Cell parameters from 150 reflections
$\theta=2.3-22.5^{\circ}$
$\mu=14.66 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, pink
$0.10 \times 0.08 \times 0.06 \mathrm{~mm}$

675 independent reflections
669 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.013$
$\theta_{\text {max }}=25.5^{\circ}$
$\theta_{\text {min }}=3.3^{\circ}$
$h=-3 \rightarrow 5$
$k=-14 \rightarrow 15$
$l=-7 \rightarrow 8$

Refinement

Refinement on $F^{2} \quad$ Secondary atom site location: difference Fourier map

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.022$
$w R\left(F^{2}\right)=0.056$
$S=1.24$
675 reflections
67 parameters
1 restraint
Primary atom site location: structure-invariant direct methods

Hydrogen site location: difference Fourier map
H atoms treated by a mixture of independent and constrained refinement

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.035 P)^{2}+0.7631 P\right]
$$

where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=0.56 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-2.27$ e \AA^{-3}
Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Nd1	$0.14116(6)$	$0.93569(2)$	$0.80136(4)$	$0.00655(15)$
S1	$0.4852(3)$	$0.85400(10)$	$0.38900(18)$	$0.0059(3)$
O1	$0.3672(9)$	$0.8343(3)$	$0.5628(6)$	$0.0136(8)$
O2	$0.2485(9)$	$0.9040(3)$	$0.2196(6)$	$0.0127(8)$
O3	$0.7563(9)$	$0.9295(3)$	$0.4498(6)$	$0.0105(8)$
O4	$0.5923(9)$	$0.7539(3)$	$0.3200(6)$	$0.0129(8)$
O5	$0.3028(9)$	$1.0847(3)$	$1.0385(6)$	$0.0081(7)$
H1	$0.295(14)$	$1.148(2)$	$0.997(9)$	0.010^{*}

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Nd1	$0.0075(2)$	$0.0051(2)$	$0.0073(2)$	$0.00001(8)$	$0.00245(14)$	$-0.00073(8)$
S1	$0.0073(6)$	$0.0040(6)$	$0.0068(6)$	$0.0003(4)$	$0.0026(5)$	$-0.0001(4)$
O1	$0.0172(19)$	$0.0129(19)$	$0.0136(19)$	$0.0013(16)$	$0.0093(16)$	$0.0003(15)$
O2	$0.0096(18)$	$0.0133(18)$	$0.0131(18)$	$0.0026(16)$	$-0.0002(15)$	$0.0032(15)$
O3	$0.0088(19)$	$0.008(2)$	$0.015(2)$	$-0.0023(13)$	$0.0036(16)$	$-0.0004(13)$
O4	$0.0196(19)$	$0.0066(19)$	$0.015(2)$	$0.0037(15)$	$0.0092(17)$	$-0.0002(14)$
O5	$0.0080(18)$	$0.0034(16)$	$0.0122(18)$	$0.0005(14)$	$0.0016(14)$	$0.0027(14)$

Geometric parameters (A, ${ }^{\circ}$)

$\mathrm{Nd} 1-\mathrm{O} 4{ }^{\text {i }}$	2.374 (4)
$\mathrm{Nd} 1-\mathrm{O} 5^{\text {ii }}$	2.431 (4)
Nd1-O5	2.437 (4)
Nd1-O1	2.492 (4)
Nd1-O3 ${ }^{\text {iii }}$	2.535 (4)
$\mathrm{Nd} 1-\mathrm{O} 5^{\text {iv }}$	2.536 (4)
$\mathrm{Nd} 1-\mathrm{O} 3^{\text {v }}$	2.538 (4)
$\mathrm{Nd} 1-\mathrm{O} 2{ }^{\text {vi }}$	2.624 (4)
Nd1-O2 ${ }^{\text {vii }}$	2.800 (4)
Nd1-Nd1 ${ }^{\text {iv }}$	3.6744 (7)
Nd1-Nd1 ${ }^{\text {ii }}$	3.9178 (7)
$\mathrm{O} 4{ }^{\mathrm{i}}-\mathrm{Nd} 1-\mathrm{O} 5^{\mathrm{ii}}$	88.26 (13)
$\mathrm{O} 4{ }^{\mathrm{i}}-\mathrm{Nd} 1-\mathrm{O} 5$	137.19 (13)
$\mathrm{O} 5{ }^{\mathrm{ii}}-\mathrm{Nd} 1-\mathrm{O} 5$	72.81 (14)
$\mathrm{O} 4{ }^{\mathrm{i}}-\mathrm{Nd} 1-\mathrm{O} 1$	66.02 (13)
$\mathrm{O} 5{ }^{\mathrm{ii}}-\mathrm{Nd} 1-\mathrm{O} 1$	72.10 (13)
$\mathrm{O} 5-\mathrm{Nd1}$ - O 1	136.35 (13)
$\mathrm{O} 4{ }^{\text {i }}$ - $\mathrm{Nd} 1-\mathrm{O} 3^{\text {iii }}$	136.85 (12)
$\mathrm{O} 5{ }^{\text {iii }}-\mathrm{Nd} 1-\mathrm{O} 3{ }^{\text {iii }}$	91.10 (13)
$\mathrm{O} 5-\mathrm{Nd} 1-\mathrm{O} 3{ }^{\text {iii }}$	82.80 (13)
$\mathrm{O} 1-\mathrm{Nd} 1-\mathrm{O} 3^{\text {iii }}$	72.80 (12)
$\mathrm{O} 4{ }^{\text {i }}-\mathrm{Nd} 1-\mathrm{O} 5^{\text {iv }}$	77.43 (13)
$\mathrm{O} 5^{\mathrm{ii}}-\mathrm{Nd} 1-\mathrm{O} 5^{\mathrm{iv}}$	128.19 (16)
$\mathrm{O} 5-\mathrm{Nd} 1-\mathrm{O} 5^{\text {iv }}$	84.74 (13)
$\mathrm{O} 1-\mathrm{Nd} 1-\mathrm{O} 5^{\text {iv }}$	138.09 (13)
$\mathrm{O} 3{ }^{\text {iii }}-\mathrm{Nd} 1-\mathrm{O} 5^{\text {iv }}$	132.32 (12)
$\mathrm{O} 4^{\mathrm{i}}$ - $\mathrm{Nd} 1-\mathrm{O} 3^{\text {v }}$	88.46 (12)
$\mathrm{O} 5^{\mathrm{ii}}-\mathrm{Nd} 1-\mathrm{O}^{\mathrm{v}}$	139.42 (13)
$\mathrm{O} 5-\mathrm{Nd} 1-\mathrm{O} 3^{\text {v }}$	130.63 (11)
$\mathrm{O} 1-\mathrm{Nd} 1-\mathrm{O} 3^{\text {v }}$	69.68 (13)
$\mathrm{O} 3{ }^{\text {iii }}-\mathrm{Nd} 1-\mathrm{O} 3^{\mathrm{v}}$	65.06 (14)
$\mathrm{O} 5^{\mathrm{iv}}-\mathrm{Nd} 1-\mathrm{O} 3^{\mathrm{v}}$	90.27 (13)
$\mathrm{O} 4{ }^{\mathrm{i}}-\mathrm{Nd} 1-\mathrm{O} 2^{\text {vi }}$	133.45 (13)
$\mathrm{O} 5^{\mathrm{ii}}-\mathrm{Nd} 1-\mathrm{O} 2{ }^{\text {vi }}$	133.02 (12)
$\mathrm{O} 5-\mathrm{Nd} 1-\mathrm{O} 2{ }^{\text {vi }}$	61.74 (12)
$\mathrm{O} 1-\mathrm{Nd} 1-\mathrm{O} 2{ }^{\text {vi }}$	137.14 (12)
$\mathrm{O} 3{ }^{\text {iii }}-\mathrm{Nd} 1-\mathrm{O} 2{ }^{\text {vi }}$	72.81 (13)
$\mathrm{O} 5^{\mathrm{iv}}-\mathrm{Nd} 1-\mathrm{O} 2{ }^{\text {vi }}$	60.80 (12)

S1-O1	1.453 (4)
S1-O4	1.459 (4)
S1-O2	1.470 (4)
S1-O3	1.496 (4)
$\mathrm{O} 2-\mathrm{Nd} 1{ }^{\text {vi }}$	2.624 (4)
$\mathrm{O} 2-\mathrm{Nd} 1^{\text {viii }}$	2.800 (4)
$\mathrm{O} 3-\mathrm{Nd} 1{ }^{\text {iii }}$	2.535 (4)
$\mathrm{O} 3-\mathrm{Nd} 1{ }^{\text {ix }}$	2.538 (4)
$\mathrm{O} 4-\mathrm{Nd} 1^{\mathrm{x}}$	2.374 (4)
O5-Nd1 ${ }^{\text {ii }}$	2.431 (4)
$\mathrm{O} 5-\mathrm{Nd} 1{ }^{\text {iv }}$	2.536 (4)
$\mathrm{O} 4{ }^{\text {i }}-\mathrm{Nd} 1-\mathrm{Nd} 1^{\text {iv }}$	109.65 (10)
$\mathrm{O} 5^{\mathrm{ii}}-\mathrm{Nd} 1-\mathrm{Nd} 1^{\text {iv }}$	103.34 (9)
$\mathrm{O} 5-\mathrm{Nd} 1-\mathrm{Nd} 1{ }^{\text {iv }}$	43.41 (9)
$\mathrm{O} 1-\mathrm{Nd} 1-\mathrm{Nd} 1{ }^{\text {iv }}$	173.45 (9)
$\mathrm{O} 3^{\text {iii }}-\mathrm{Nd} 1-\mathrm{Nd} 1^{\text {iv }}$	112.42 (8)
$\mathrm{O} 5^{\text {iv }}-\mathrm{Nd} 1-\mathrm{Nd} 1{ }^{\text {iv }}$	41.33 (8)
$\mathrm{O} 3{ }^{\text {v }}$ - $\mathrm{Nd} 1-\mathrm{Nd} 1^{\text {iv }}$	115.79 (9)
$\mathrm{O} 2{ }^{\text {vi }}-\mathrm{Nd} 1-\mathrm{Nd} 1{ }^{\text {iv }}$	49.41 (8)
$\mathrm{O} 2{ }^{\text {vii }}$ - $\mathrm{Nd} 1-\mathrm{Nd} 1{ }^{\text {iv }}$	45.37 (8)
$\mathrm{O} 4{ }^{\mathrm{i}}-\mathrm{Nd} 1-\mathrm{Nd} 1^{\text {ii }}$	115.94 (9)
$\mathrm{O} 5{ }^{\text {ii }}-\mathrm{Nd} 1-\mathrm{Nd} 11^{\text {ii }}$	36.45 (9)
O5-Nd1-Nd1 ${ }^{\text {ii }}$	36.35 (9)
$\mathrm{O} 1-\mathrm{Nd} 1-\mathrm{Nd} 1{ }^{\text {ii }}$	105.03 (9)
$\mathrm{O} 3{ }^{\text {iii }}-\mathrm{Nd} 1-\mathrm{Nd} 1{ }^{\text {ii }}$	86.21 (9)
$\mathrm{O} 5^{\text {iv }}-\mathrm{Nd} 1-\mathrm{Nd} 1{ }^{\text {ii }}$	109.06 (9)
$\mathrm{O}^{\mathrm{v}}-\mathrm{Nd} 1-\mathrm{Nd} 11^{\text {ii }}$	151.19 (8)
$\mathrm{O} 2{ }^{\text {vi }}-\mathrm{Nd} 1-\mathrm{Nd} 1{ }^{\text {ii }}$	97.41 (9)
$\mathrm{O} 2^{\text {vii }}-\mathrm{Nd} 1-\mathrm{Nd} 1{ }^{\text {ii }}$	58.27 (8)
$\mathrm{Nd} 1{ }^{\text {iv }}-\mathrm{Nd} 1-\mathrm{Nd} 1{ }^{\text {ii }}$	72.017 (16)
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{O} 4$	110.5 (2)
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{O} 2$	111.9 (2)
$\mathrm{O} 4-\mathrm{S} 1-\mathrm{O} 2$	109.4 (2)
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{O} 3$	109.2 (2)
$\mathrm{O} 4-\mathrm{S} 1-\mathrm{O} 3$	108.2 (2)
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{O} 3$	107.5 (2)
$\mathrm{S} 1-\mathrm{O} 1-\mathrm{Nd} 1$	139.5 (2)
$\mathrm{S} 1-\mathrm{O} 2-\mathrm{Nd} 11^{\text {vi }}$	133.1 (2)

supplementary materials

$\mathrm{O} 3{ }^{\mathrm{v}}-\mathrm{Nd} 1-\mathrm{O} 2^{\mathrm{vi}}$	73.07 (12)	$\mathrm{S} 1-\mathrm{O} 2-\mathrm{Nd1}{ }^{\text {viii }}$	138.3 (2)
$\mathrm{O} 4{ }^{\text {i }}-\mathrm{Nd} 1-\mathrm{O} 2^{\text {vii }}$	78.28 (12)	$\mathrm{Nd1}{ }^{\text {vi }}-\mathrm{O} 2-\mathrm{Nd1}{ }^{\text {viii }}$	85.22 (11)
$\mathrm{O} 5^{\mathrm{ii}}-\mathrm{Nd} 1-\mathrm{O} 2{ }^{\text {vii }}$	70.32 (12)	$\mathrm{S} 1-\mathrm{O} 3-\mathrm{Nd} 1{ }^{\text {iii }}$	120.8 (2)
$\mathrm{O} 5-\mathrm{Nd} 1-\mathrm{O} 2^{\text {vii }}$	59.36 (12)	S1-O3-Nd1 ${ }^{\text {ix }}$	124.3 (2)
$\mathrm{O} 1-\mathrm{Nd} 1-\mathrm{O} 2^{\text {vii }}$	128.08 (12)	$\mathrm{Nd} 1{ }^{\text {iii }}-\mathrm{O} 3-\mathrm{Nd} 1{ }^{\text {ix }}$	114.94 (14)
$\mathrm{O} 3{ }^{\text {iii }}-\mathrm{Nd} 1-\mathrm{O} 2{ }^{\text {vii }}$	141.03 (12)	$\mathrm{S} 1-\mathrm{O} 4-\mathrm{Nd} 1^{\mathrm{x}}$	155.2 (3)
$\mathrm{O} 5^{\text {iv }}-\mathrm{Nd} 1-\mathrm{O} 2{ }^{\text {vii }}$	58.11 (12)	Nd1 $1^{\text {ii- }}$ O5-Nd1	107.19 (14)
$\mathrm{O} 3{ }^{\mathrm{v}}-\mathrm{Nd} 1-\mathrm{O} 2{ }^{\text {vii }}$	147.55 (12)	$\mathrm{Nd} 1{ }^{\text {ii }}-\mathrm{O} 5-\mathrm{Nd} 11^{\text {iv }}$	128.19 (16)
$\mathrm{O} 2{ }^{\text {vi }}-\mathrm{Nd} 1-\mathrm{O} 2{ }^{\text {vii }}$	94.78 (11)	$\mathrm{Nd} 1-\mathrm{O} 5-\mathrm{Nd} 1{ }^{\text {iv }}$	95.26 (12)

Symmetry codes: (i) $x-1 / 2,-y+3 / 2, z+1 / 2$; (ii) $-x+1,-y+2,-z+2$; (iii) $-x+1,-y+2,-z+1$; (iv) $-x,-y+2,-z+2$; (v) $x-1, y, z$; (vi) $-x$, $-y+2,-z+1$; (vii) $x, y, z+1$; (viii) $x, y, z-1$; (ix) $x+1, y, z$; (x) $x+1 / 2,-y+3 / 2, z-1 / 2$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O}-\mathrm{H} 1 \cdots \mathrm{O} 1^{\mathrm{xi}}$	$0.83(3)$	$2.43(3)$	$3.224(5)$	$160(6)$

Symmetry codes: (xi) $-x+1 / 2, y+1 / 2,-z+3 / 2$.

supplementary materials

Fig. 1

Fig. 2

